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METHODS OF DETERMINING SORET COEFFICIENTS

G. D. Rabinovieh, M. A, Bukhtilova, UDC 621.039.3
and Zh. V., Lepekhina

THE ORY

A binary liquid mixture produces a flow in response to a temperature gradient even though there are
no external forces, and this is described by the thermodynamics of irreversible processes [1] as follows:

}; = —opD[gradc, —sc, (1 —¢;) grad T, (1.1)
where s is the Soret coefficient, which can be expressed in terms of the heat of isothermal transport Q;‘
. " d
s=(Q — Q,}/ Te, M1 (1.2)
dcy

where y, is the chemical potential.

No means of measuring the Qf can be indicated by the thermodynamics of irreversible processes,
and so in modern theories of the liquid states one either uses model concepts on heat transport or else
statistical mechanics.

It would seem that the first study based on model concepts used the kinetic theory with the assump-
tion that diffusion involves an activation energy [2], where the following expression was given for the Soret

coefficient in an isotopic mixture [3]:
o g1 I/Ml {
T TRETT Qsz - 1.3)

where Ay is the bond energy between the molecules, h is Planck's constant, k is Boltzmann's constant,
and v is molecular vibration frequency.

A point to be noted here is that part of the activation energy corresponding to hole formation may be
neglected; it is stated [3] that although the use of (1.3) is restricted by the condition hy>kT, the equation
agrees satisfactorily with Korsching's data for s in HyO—~D,0 mixtures,

Prigogine et al [4] drew analogous conclusions from

hv hv
exp (——) <1—~ ——) —1
MM : RT kT

kTt 2M [exp (kﬁjv?) __IT l 1.4)

TABLE 1. Soret and Diffusion Coefficients [41] for Potas~
sium Chloride Solution (cy=0.01826)

. Soret coefficient, s « Diffusjon coeffxcxent
Cell height §, cm I 10° deg'l ) ' D- 1051 cm?/sec
i
0,695 ; 0,51 1,12
0,910 0,49 1,17
0,975 0,27 3,04
1,396 0,38 1,94

Translated from Inzhenerno-Fizicheskii Zhurnal., Vol. 28, No. 6, pp. 1099-1128, June, 1975, Orig-
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Fig. 1. Tanner cell: 1) window; 2) working space; 3) water outlet;
4) thermometer sleeve; 5) water inlet; 6) filling channel; 7) silver
body.

Fig. 2. Longworth cell: 1) bakelite plate; 2) silver plate; 3) sol-
vent chamber; 4) solute chamber; 5} spiral water channel; 6) pipes.
which related to their results from experiments on the above isotopic mixture,
Until recently, (1.3) and (1.4) had not been checked on other isotopic mixtures.
Trevoy and Drickamer [30] used simple model concepts on thermal diffusion in liquids to show that
the Soret coefficient for a binary mixture is

1
§ = — (X; —X,),
. T(1 2)

where x, is the probability of finding component i in the hot region, which can be expressed in terms of
the mass m; of the molecules and the cross section ¢j in the direction of motion as

Measurements with mixtures of normal paraffins having from 7 to 18 carbon atoms showed that k; is
a constant, i.e., the formula can be used to derive the microscopie constants of mixtures from measured
Soret coefficients. Subsequently, Drickamer abandoned this simplified model [9, 10].

Prigogine et al. [5] used the kinetic theory to derive the following formula for the Soret coeefficient
for a nonisotopic mixture:
ga — Qg
$=TRTT (1.5)
in which qp and qp were, as in [3], a part of the activation energy needed to break the bonds between
molecules.

We see from (1.2) that this becomes (1.5) for an ideal mixture if we equate the difference in the
heats of transport to the difference in the bond energies; it has been shown [5] that (1.5) can be put in the
form

2 ('E, —VE,),VE, +-c5VEp)

§ = —m

3 RT? ' (1.6)

where E is the evaporation energy for a component and ¢ is a coefficient of order 10-!, which incorporates
the fraction of the bond energy needed to produce a hole. We see from (1.6) that the sign of the coefficient
is dependent on the energy of evaporation for each of the pure components, which is true only for molecules
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Fig. 3. Korsching cell: 1) spring device; 2) window; 3) plates; 4) pipes;
5) water-circulation channel; 6) working volume,

Fig. 4. Tyrrell cell: 1) stainless-steel body; 2) PTFE ring; 3) sealing
rings; 4) steel pressure ring; 5) heavy copper block; 6) working gap; 7)
upper space; 8) windows; 9) pump; 10) lower space.

of identical shape [5]. If the molecules differ in shape, these workers suggested that the quantity deter-
mining the sign of the Soret coefficient should be taken as the difference of the ratios of the molar evapora-
tion energy to the molar volume, i.e.,
EA EB
S~ YT, (L.6a)

B

with the positive sign corresponding to motion of the component of larger E/V to the cold region. Experi-
ments with nine binary mixtures [5] confirmed (1.6a), although these were nearly ideal mixtures; if the
properties deviate markedly from ideal, it has been found [6] for four mixtures containing alcohols that
(1.6a) applies only up to a certain concentration, past which the sign of the Soret coefficient reverses.

These studies were continued by Thomaes [7], who confirmed the results of [5, 6] for six binary
mixtures.

He also determined the £ of (1.6) as 0,12 for cyclohexane + carbon tetrachloride.

The rule represented by (1.6a) was confirmed by Korsching [14] on five binary mixtures over a wide
range of concentrations, and also for n-heptane mixed with benzene, which had been examined by Demi-~
chowicz— Pigoniowaetal [15]. However, exceptions were found even for regular solutions. For example,
Guczi and Tyrrell [16] found for mixtures of carbon tetrachloride with benzene that the former moved
towards the cold region, not the benzene, although the E/V for the latter is the higher. Story and Turner
[17] observed a similar effect for mixtures of cyclohexane with benzene or carbon tetrachloride at low
cyclohexane concentrations.

Nevertheless, rule (1.6a) due to Prigogine et al. is an extremely useful basis for semiempirical
theories of binary mixtures in temperature gradients. Prigogine's rule covers more experimental data
than does Brynza's [18] rule, which indicates that the denser component moves to the cold region.

Denbigh [8] applied the theory of regular binary solutions and assumed as a zeroth approximation
that the total interaction energy of a molecule i with its nearest neighbors can be represented as the sum
of pairwise potential energies W-lj and he found that

aNf O Wy W) — g (Wy — W)
2T RT —zNeywe, QW — Wy —

§ = —

» (1°7)

22)

where N is Avogadro's number, f is a numerical factor less than 1, and z is the coordination number.

It is clearly impossible to use (1.7) to calculate s directly, since quantities such as z and Wij are
unknown.

Alexander [11] applied nonequilibrium thermodynamics with model concepts from kinetic theory to
derive the following expression for a mixture of nonelectrolytes:

—* —
0 — 0@

§ = — TD12 . (1 .8)
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Fig. 5. Riehl membrane cell: 1) body; 2) cover; 3) stirrers; 4) cooling
coil; 5) thermometer sleeve; 6) upper space containing mixture; 7) mem-
brane; 8) lower space containing mixture; 9) heating coil.,

Fig. 6. Membrane cell: 1) electrical heater; 2) thermocouples; 3) holes
for sampling; 4) magnetic stirrers; 5) porous diaphragm; 6) cold water
inlet.

Here W =Di/RT is the molecular mobility, D; is the self-diffusion coefficient, and QT is the kinetic heat
of transport. Alexander [11]also gave a formula relating the Soret coefficient to the molecular mobilities
of the ions and of the solvent, which correspond to the kinetic heats of transport, other quantities involved
being the numbers of cations and anions produced by dissociation of the molecule and the molar concentra-
tion of these. Subseguently, Alexander [12] applied hydrodynamic theory to determine the molecular mo-
bility.

It will be clear from the above that the kinetic theory cannot enable one to calculate the Soret coef-
ficient, nor can the thermodynamics of irreversible processes, since one is forced to operate with quan-
tities that have no analogs in the macroscopic characteristics of the mixture components.

Rutherford and Drickamer [9] attempted to relate the microscopic quantities determining the Soret
coefficient to the macroscopic properties of the components; they transformed (1.7) to the form
s ©VH +6VH)VH —iH)
2T [RT — ¢y, (V' H, —V'H, ) '

(1.9)

in which
H = —NW,; Hy, = —NzW,,

with the H; related to the macroscopic properties of the components on the hypothesis that there is an em-

pirical relationship
[ OP v\ ]
H, =T{— V—T(———) J 1.10
' ( oT )V [ or Jp (10

They also extended Denbigh's theory to binary mixtures in which the molecules of the components differ

in size. They also tested their theory and made measurements up to pressures of 10,000 atm because
(1.10) contains a combination of the coefficients of isothermal compression and bulk expansion, which are
substantially dependent on pressure. In all they examined nine binary mixtures. The thermal-diffusion
constanta =sT was calculated from (1.9) and (1.10); good agreement with experiment was obtained for two
mixtures having molecules nearly the same in size: carbon disulfide + ethyl iodide and carbon disulfide +
carbon tetrachloride. Rutherford, Saxton, Dougherty, and Drickamer [10, 97-99] also tested this theory
on binary mixtures of haloethanes and other compounds with molecules of similar shape; they found fairly
good agreement with experiment. The hypothesis due to Drickamer et al, which is expressed by (1.9),
found indirect confirmation in a later paper by Bearman [21], in which techniques from statistical mechan-
ics were used to show that there is a relationship between the Soret coefficient and the coefficients of iso-
thermal compression and thermal expansion. Subsequently, Dougherty and Drickamer [49] showed that the
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Fig. 7. High-pressure membrane cell: 1) power and
thermocouple connections; 2) lower piston; 3) cell; 4)
block; 5) upper piston; 6) mercury cup; 7) electric
heater; 8) sintered-glass diaphragm; 9) stirrers; 10)
solenoid; 11) lead seals; 12) sealing ring; 13) thermo-
couples.

energy transported by a molecule on passing from one state of equilibrium to another can be expressed in
terms of half the activation energy for the viscosity AUj/2V;, and they found the following expression for
the Soret coefficient:

@€.11)

MYV, ~ MV, ( AU, AU, >
2MRT? Vs RV, )’

where M =¢iMy +¢,M,, V; is the molar volume of component i, and k is a coefficient that incorporates the
number of associated molecules; this formula was checked on 20 mixtures of carbon disulfide with various
compounds, including alcohols, and the value of k for the latter was about 2.6, On the whole, there was
satisfactory agreement between the calculated and measured values for the thermal-diffusion constant,

Story and Turner [17] tried to simplify (1.7) by eliminating the coordination number and replacing
the difference W-l]- — Wij by the partial heats of evaporation for the mixture; however, measurements on
the mixtures CCl, — CgHg, CgHyy — CiHg, and CCl, — C¢H, did not agree with the theory either as to the mag-
nitude of the Soret coefficient or even as to the sign, Tichadek, Kmak, and Drickamer [13] extended the
study of {49] and transformed the equations from the thermodynamics of irreversible processes to the lab-
oratory coordinate system to get

VRT? (1.12)

Comparison of the two formulas shows that the heat of transport Q;‘ is identical with the energy of activa~
tion g; for an ideal solution.

The Soret coefficient is determined by the difference of the (q/\-f-)-l, which agrees with (1.62) if we
identify the activation energy with the latent heat of evaporation, However, Tichacek et al [13] followed
[49] in relating the g; to the enthalpies of activation for the viscosities of the pure components, which they
confirmed on 12 binary mixtures, which in some cases gave satisfactory agreement with theory as to the
sign and magnitude of the Soret coefficient. Mizushina and Ito [22] resembled [13] in transforming the equa-
tions of irreversible thermodynamics to the laboratory coordinate system and invoking kinetic theory, but
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Fig. 8.‘ Flow cell: 1) cold water inlet; 2) copper plates;
3) mixture inlet; 4) hot water inlet; 5) working gap; 6)
flow divider; 7) sampling tubes; 8) thermocouple holes.

derived a different expression for the Soret coefficient, which included the coordination numbers and dif-
fusion coefficients. It was found that the theory agrees with the trend in the Soret coefficient with temper-
ature and concentration for mixtures of carbon tetrachleride with ethanol and methanol if the coordination -
number is chosen appropriately, which was shown by the Japanese workers themselves and by others; the
value appropriate to the above experiments varied from 15 to 23, The weak point in this theory, as for
others, is that it involves the coordination number as a parameter in calculating the Soret coefficient, and
this quantity is indefinite, although this, of course, was recognized by the workers themselves, In that
respect, one of the recent papers of this kind [23] has no advantages over other such studies.

The above researches, in fact, exhaust all the major studies on-the derivation of the Soret coefficient
from the thermodynamics of irreversible processes on the basis of model concepts from kinetic theory con-
cerning the heats of transport. The latter lack rigor and are substantially dependent on the researcher's
infuition, Kotousov's theory [29] is free from this deficiency, since he showed that the Soret coefficient in
a condensed system can be determined within the framework of irreversible thermodynamics in terms of
the excess thermodynamic functions: the free energy g, enthalpy h, and specific heat Cps namely,

1 2% D,, AM | e, o%g -t
§=—— 3 |P " % | S T | Tae |

KT  0c A M de, ocy
where Dy, and A are the thermal-diffusion coefficient and thermal conductivity, n is the molar density, and

K is a coefficient varying from 0.5 to 1; however, (1.13) has not been checked by experiment on liquid mix-
tures,

(1.13)

A new stage in the theory of the Soret coefficient began in 1958, when the paper by Bearman, Kirk-
wood, and Fixman appeared [119], In that study, the techniques of statistical mechanics were combined
with Onsager's principle of detailed halancing. In that theory, « is the sum of the equilibrium partoy,
and the nonequilibrium part oy, which are defined as follows:

—a.c Opy __:_l_ ViV, (?2 _&)’
Y 8e Jre 2 v V. v,/ (1.14)
e[ 2] b BB (g ()
b (36‘1 T.rp 2V Dg + 1 : kY Vl Vg
- - _ - = ) 3
2 {4y Vy — LiVy) + 26 (L V, — LVy) — Y 1y } , (1.15)

where L are the heats of evaporation of the components from the mixture, I are the same for the pure
components D; are the self-diffusion coefficients, and I; is an integral that includes themicroscopic param-
eters of the molecular interaction, including the radial distribution. The integral vanishes for a liquid
whose molecules consist of hard spheres,

Bearman [21] did not employ irreversible thermodynamics but techniques from statistical mechanics
to derive other expressions for @y and @,z

BBy — BB

9 1 v, | : 1
“HCI(%)TPZTRTIV T T(TRT”PV)’ (t.16)
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Fig. 9. De Groot thermal-diffusion column: 1) water inlet and
outlet; 2) plate; 3) insert; 4) upper space; 5) upper sampler; 6)
working gap; 7) Nichrome heater; 8) thermocouple hole; 9) lower
space; 10) lower sampler.

Fig. 10. Thermal-diffusion column: 1) lower space; 2) outer
cylinder; 3) working gap; 4) internal cylinder; 5) upper space; 6)
sampler; 7) recesses for lower samplers; 8) hot-water circula-
tion channel.

oy, T D,—D 1 - g
o = L RV, +V,)— —
*1201( e, )T.P Vv D, - D, { 9 R, +Vy B ViV,
1

)

1

ViV, f:, — BB, Iy +—15%, 1.17)
6

14 B’
where 8 and B' are the thermal-expansion coefficient and isothermal compressibility of the solution, re-
spectively, while 8; and ﬁ{ are the same for the pure components, with the integrals I, and I; including the
radial part of the distribution, with only the first of these becoming zero for a mixture whose molecules
consist of hard spheres.

[*é“ RT (¢ —¢}) — P(szz - Clvl):’ +

Bearman and Horne [24] tested (1.14)-(1.17) with a mixture of cyclohexane + carbon tetrachloride,
for which they had previously [25] recorded measurements. It was found that the Bearman—Kirkwood—
Fixman theory (BKF theory) agreed fairly well with experiment at medium concentrations, and the con~
tributions from the equilibrium and nonequilibrium components were approximately the same. Bearman's
theory [21] gave half the observed thermal-diffusion constant, with only a minor contribution from the
equilibrium component. This major discrepancy between the two theories was ascribed [24] to the neglect
of terms containing the integrals in calculations from (1.14)-(1.17), and while this is justified to some ex-
tent for the BKF theory, if the mixture is considered as consisting of hard spheres, for Bearman's theory
it is permissible only for the integrall,.

Story [17] tested both theories, using mixtures of carbon tetrachloride with benzene, cyclohexane
with benzene, and cyclohexane with carbon tetrachloride, i.e., mixtures with molecules similar in shape
and size. In all three cases there were marked discrepancies between the theories and measurements not
only as regards the magnitude of the Soret coefficient, but even the sign. This gives interest to Shie’s
data [23], who compared her measurements on a mixture of n-hexane with n-heptane and values calculated
from the BKF theory using only the equilibrium component defined by (1.14); the agreement was good.
However, this result can hardly be said to support the theory, since there was no basis for neglecting the
nonequilibrium component of the thermal-diffusion constant.
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TABLE 2. Orders of Physical Characteristics of Mixtures Allowing

(3.5), (3.6), and (3.8) to Be Used [45]

Characteristic Order
Temperature T 300°K -
Density p 10% kg/m®
Relative concentration coefficient of density % %’— 1
v c
' - . . I & 1
Thermal-expansion coefficient o T 10-3 deg™

Dynamic viscosity 77
Specific heat cp

10-% Nsec/m’
108 J/kg-deg

Transport heat Q* 3 kI/mol
Sedimentation constant S 3.10-8 m?/N
Thermal~diffusion constant o 1,5
1 da
o o l
1 8D
- —a—T— 10-2 deg‘l
Diffusion coefficient D 10-? m?%/sec
1 ap
D dc !
1 éD N -1
> 2.10~2deg
Thermal conductivity x 0,1 W/m-deg
A dc
1 o
T —éT 10-3 deg

A further advance in applying the methods of statistical mechanics has been made by Zamskii (per-
sonal communication), in which the thermal-diffusion constant was derived in the following form for a
multicomponent isotopic mixture:

i BV m AM,
[ Prm Ri 1.18
.a'ht 6 ( ﬁ'R ) M ( )

where M =Mj+M;; comparison of (1.18) with the available experimental evidence for bromine isotopes in
bromobenzene [27] and chlorine isotopes in carbon tetrachloride [28] showed satisfactory agreement.

The following conclusions may be drawn from the history of theories of the Soret coefficient:

a) modeél concepts derived from kinetic theory sometimes serve to define the sign of the Soret coef-
ficient and even the magnitude, and the same may be said for the thermodynamics of irreversible proc-
esses used in conjunction with the kinetic theory; however, in many cases these methods give values that
diverge widely from experiment, s0 one cannot say that they fully reflect the interactions between mole-
cules in binary mixtures;

b) Kotousov's theory requires extension to liguid mixtures, as well as experimental tests;

c) the methods of statistical mechanics lead to expressions that contain the microscopic parameters
of the system, on which we have very scanty information; this applies particularly to the radial distribu-
tions. The results deserve acceptance only when they can be expressed with reasonable accuracy in terms
of macroscopic quantities, as in the case of isotopic mixtures;

d) it is necessary to accumulate more experimental data on the Soret coefficient for mixtures with
various molecular structures in order to test new theories and to determine some of the macroscopic and
microscopic characteristics of such mixtures;

e) a purely empirical approach similar to that of [9, 19, 20} cannot be ruled out for a narrow class
of mixtures, since it may be useful in applications of thermal diffusion, as well as in the technical separa-
tion of mixtures.
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It is thus clear that the originators of the various theories have sought to demonstrate their applica-~
bility in calculations by comparing the results with measured Soret coefficients, and in this connection
high accuracy is required in the measurements; this applies to all three factors that influence the relia-
bility of the final results: a) the detailed design of the experiment, b) the method of caleulation, and c)
the method of measurement,

2. APPARATUS DESIGN

2.1, Convection-Free Cells. Ludwig [107] was the first to observe a concentration gradient produced
by a temperature gradient; he kept one arm of a U~tube filled with a 9% solution of sodium sulfate at the
melting point of ice, while the other was kept at the boiling point of water, Crystals of the solute were de-
posited in the cold arm within 2 days. Soret [108] studied this phenomenon 23 years later with an appara-
tus consisting of a vertical tube of height 30 ¢cm and diameter 2 cm. The top end of the tube was kept at
80°C and the bottom at room temperature. Aqueous solutions of salts of lithium, sodium, potassium, and
copper were used. In all cases the solute concentration increased towards the cold end, but even after 55
days it had not reached a steady value. Soret's experiments were repeated by Zhuravleva [95] with a solu-
tion of sodium chloride and gave the same results. De Groot [36] estimated the time needed to reach the
steady state in Soret's experiment as 400 days. Times as large as this are quite unsuitable for research
on thermal diffusion in liquids; moreover, it is inevitable that convection currents arise and mix the solu-
tion with a tube of such a height, For this reason, Wereide [109] designed a cell consisting of a glass cy-
linder of height only 15 mm, which was bounded at top and bottom by metal vessels kept at different tem-~
peratures,

The characteristic time in the diffusion process is defined

s (2.1)

and hence the sizes of the Soret and Wereide cells show that the latter cell should reach equilibrium in

about 1 day. The actual value is about 2-3 days. The concentration change was monitored by sampling
the upper and lower parts of the glass cylinder followed by measuring the refractive index. A similar

design, but with a smaller height of 6.2 mm, was used in another study [54].

Tanner [35, 41] described an improved style of such a cell, which allowed scope for optical measure-
ments; Fig. 1 shows the design which consists of a glass cylinder having two diametrically opposite win-
dows to handle a beam and two silver blocks at the ends, in which a heat carrier is circulated at a high
speed. The temperatures at the temperature-controlled surfaces were monitored by mercury thermome-
ters placed in sleeves filled with glycerol. Tanner examined [41] the effects of the cell height on the values
obtained for the Soret and diffusion coefficients for solutions of KC1, BaCl,, and Ba(OH),; he concluded that
the height of the cell had no effect on the results. However, we must note that the Soret and diffusion coef-
ficients were calculated via (3.4), and we show below that this should reduce the Soret coefficients and in-
crease the diffusion coefficient.

Table 1 indicates how the Soret and diffusion coefficients vary with the height of the cell.

It is clear from these data that the Soret coefficient tends to fall as the cell height increases, where-
as the diffusion coefficient does the converse; this is clearly due to increased mixing by parasitic flows.
This is confirmed by comparing Tanner's data with those of [50, 52, 105], which give higher values of the
Soret coefficient for the same system. '

Cells of similar design, i.e., with distances between the surfaces of 10-17 mm and volumes of 30~
50 cm® or so, have been used in other studies [7, 26, 40], and in one case [26] it was considered that the
cell showed convective mixing.

Two-chamber cells came into use when interferometry was applied; Figure 2 shows the cell used
by Longworth [52], which consisted of a glass rectangular frame between two silver plates. The seals
between the glass and silver, and also between the silver and bakelite, were provided by layers of a cemen-
ting compound of thickness 0.2 mm. The cell was divided in the middle info two parts, in one of which was
the solution and in the other the solvent, Two-chamber cells of this type were also used in [16, 43, 105].

Measurements on solutions of polystyrene in toluene [43] showed that cells of heights 1.19, 2,05, and
4,04 mm gave identical values for the Soret coefficient; it is clear that in this case the high viscosity of the
solution and the small temperature difference (0.5°C) prevented convection.
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In 1955, Korsching [47] described another design of single-chamber cell of especially small volume,
which was attained by reducing the dimension perpendicular to the optic axis to 0.3 mm while keeping the
height about 10 mm. The cell length (which determines the deflection of the transmitted beams) was taken
as 80 mm. Korsching considered that this change in dimensions should substantially reduce the scope for
convection. The cell (Fig. 3) consisted of two iron-nickel plates, each of which had on one side a groove
forming the working volume, while on the other side there were slots carrying liquid from a thermostat,
which were closed by soldered covers Bearing connecting pipes. The ends of the block were nickel-plated
and polished, which gave surfaces to which the optical windows were pressed by springs. Mercury pro-
vided the seal between the window and the metal. Subsequently, Korsching [14] introduced some additional
improvements, which were designed to eliminate convection: the thickness of the plate 3 tapered down to
0.04 mm in the direction of the liquid flow, in order to compensate the temperature nonuniformity arising
from heat loss to the environment from the water flowing through the channels. Also, compensating heat-
ing was applied fo the ends of the cell, and the mercury seal was replaced by indium foil {1117,

Measurements have been made [39] on the performance of Tanner and Korsching cells with solutions
of cane sugar; Korsching's cell gave a Soret coefficient three or four times larger than did Tanner's cell,
so the former was considered as the better type. Higher values obtained with the Korsching cell were also
confirmed by data on the separation of the mixtures CgH;,—~CCl, [7, 47] and C¢H, + n—C;Hyq [14, 40].

Guczi and Tyrrell [16] sought to prevent convection currents and to reduce the equilibration time by
reducing the distance between the thermostatic surfaces. They chose the cell dimensions to meet the speci-
fication GrPr < 1700; a similar criterion was used in [105], but unfortunately the specifications implied by
this inequality were not actually realized in their cell. Guezi and Tyrrell used a two-chamber cell with a
height in one chamber of 0.917 mm and 0.903 mm in the other. The cell consisted of two pairs of massive
copper cylindrical blocks, which formed the upper and lower working surfaces of the chambers, while the
side walls were made of PTFE cylinders bearing optical windows. The gap was set by standard hollow
rods. Another style described by Farsang and Tyrrell [110] had the entire cell enclosed in a stainless-
steel block instead of PTFE, the material previously used [16], and also had various other improvements
(Fig. 4). The Soret coefficients obtained with this cell on a mixture of n-heptane with benzene [15] were
even somewhat higher than those recorded by Korsching {14].

2.2. Membrane Cell. In 1943, Riehl [33] described a new design of cell, which he considered
should prevent convective mixing and accelerate equilibration., Figure 5 shows this cell in the style used
by Alexander [31]. The distinctive feature is the membrane that separates the two volumes.

Alexander tested the cell on aqueous solutions of lithium, sodium, potassium, and ammonium chlo-
rides, and also potassium and zinc sulfates. He found that the result for the Soret coefficient was very
much dependent on the size of the pores in the diaphragm, for which purpose he used various forms of
cellophane and also filters with large pore sizes. The Soret coefficient decreased steadily as the pore
radius increased, but was still twice the value found by Tanner [35] even in the case of the membrane with
the largest pores (pore radius 0.03 um). The reason for this is that the heat of transport is dependent on
the pore size when this is small, and the effect is the most pronounced when the pore radius is comparable
with the molecular size. This circumstance must be borne in mind with any membrane cell.

Saxton, Dougherty, and Drickamer [10] described another design of membrane cell (Fig. 6), in which
the membrane itself consists of sintered glass (pore size 5-10 um), while the mixing in the volumes was
provided by magnetic stirrers. They found that there was a limiting stirring rate above which the convec-
tion currents began to penetrate into the membrane, which adversely affected the separation. However,
no figure was given for this limit, and no other studies on this factor have been published.

A study has also been reported [10] of the effect from the mutual disposition of the two chambers
in the cell; it was found that the results were unaffected if the cold chamber was above the hot one or vice
versa. It isdifficult to judge the performance of the cell of this type, since nothing has been published on
the Soret coefficients for the mixtures used in [10] as measured by other techniques, in particular, in
Korsching and Tyrrell cells. This applies also to all data on Soret coefficients from membrane cells,
apart from [96], in which a value of 18 - 10~ deg'1 was obtained for a CgH;—CCl, mixture at a benzene
concentration of 0.9, whereas Korsching found a value almost half this, 9.8+ 10~° deg=!, for a benzene
concentration of 0,95, This point appears extremely important, since if the results of [96] are reliable,
they provide some confirmation of Kotousov's theoretical results [29]. On the other hand, there was no
mixing in the chambers of the cell used by Rassoul and Bott [96], and no figures were given for the
volumes of the chambers, so no definite conclusion can be drawn on this topic.
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A cell of the type of [10] has been used also in other studies {32, 49, 98, 99]; the theory of [9] for
thermal diffusion in liquids was tested with a cell designed to work under pressures up fo 10,000 atm (Fig.
7). The cell consisted of two chambers separated by a diaphragm of porous glass of thickness 1 mm, and
it was enclosed in a bomb of outside diameter 203.2 mm and internal diameter 22.2 mm. The bomb was
immersed in a vessel maintained at a temperature of +17°C. The pressure on the mixture was provided
by mercury in a cup. The volumes of the upper and lower chambers were unequal, being 0.15 and 1.1
cms, respectively. This cell was subsequently used in the research of [99); unfortunately, the results
obtained with these two cells are not comparable with the data obtained with Korsching or Tyrrell cells.
Shie [23] recently described a new design of membrane cell, in which both chambers were of volume about
16 em® and consisted of glass cylinders of outside diameter 30 mm. The two volumes were stirred by
magnetic stirrers.

2.3. Flow Cell. In 1956, Thomaes [55] described a new method and appropriate type of cell for
determining the Soret coefficient. The basic concept was that the mixbure flows as a laminar layer between
two horizontal plates having a separation of about 0.1 mm, across which there is a vertical temperature
gradient, which produces a concentration gradient. The flow at the exit from the cell is split into two
parts in the vertical direction, and each is assayed for the component concentrations. Turner et al [60,
59, 61] made a series of studies with a cell of this type; the original design of [60] was subsequently im-
proved, and the new style [58]is shown in Fig. 8. The cell consists of two half-inch copper plates separa-
ted by PTFE inserts.

The plates are held together by bolts. The resulting flat channel was of width 5 cm and length 15 em,
and the flow at the exit was split by a stainless-steel knife edge into two parts,

The results obtained with CCl;—CzH, and with benzene—methanol mixtures -[61] agreed well
with Tyrrell's data [16, 112], Nevertheless, one cannot assume that such cells have been shown to be re-
liable in view of a recent paper [63], in which it was shown that the flow rate has a very marked effect on
the result for the Soret coefficient if the rate is less than some definite limit (in the experiments of [63],
4 cm3/h for a gap of 0.2 mm, cell width 50 mm, and length 200 m).

2.4. Thermal-Diffusion Column, A thermal-diffusion column as an instrument was first used by
Korsching [113] to determine Soret coefficients for C¢H,~CgD, mixtures in a cylindrical column of height
96 mm with a gap of 0.26 mm, which was also used by De Groot [114]; in the latter case, the Soret coef-
ficient was determined for molar aqueous copper sulfate in a column of the style shown in Fig. 9. The
column consisted of two copper plates: a hot one of thickness 9 mm anda cold one of thickness 11 mm.

The heating was provided by a flat nichrome heater, while the cooling was by water flowing at 0.54 m3/h,
which was considered as providing a high heat-transfer factor and was sufficient to prevent the exit water
temperature from rising by more than 1°, Vessels of volume about 18.2 cm® were placed at top and bottom
of the column. The working height was 5.46 cm and the width 8 cm.

Soret coefficients have been measured for various binary mixtures in a column of this type [5-7]; a
column of similar design, but with the electrical heating replaced by circulating hot water, has been used
to determine the Soret coefficients for electrolyte solutions and in the separation of chlorine isotopes
[11, 101], A similar column has also been used with radiative heating of one of the copper plates {91},
where the temperature difference along a surface did not exceed 0.5°C; the vessels were equal in volume
(5.45 cm®), while the gap was 0.2 mm. The results on the Soret coefficients for various solutions obtained
with this column can be compared with other data only for ethanol—cyclohexane mixtures, where the data
of [91] agree with those of [6]. :

Murin and Popov [89] followed Korsching in using a cylindrical column which was made of copper
with a gap radius of 17 mm and a gap width of 0.45 mm in conjunction with a working length of 205 mm.

Wider sleeves at the top and bottom of the cotumn produced volumes of 6.7 cm?; the heating was
provided by an electrical spiral and the cooling by flowing water,

There are two major features that (if neglected) might diseredit the thermal-diffusion column as a
means of measuring Soret coefficients. Firstly, the gap geometry should be as nearly ideal as possible
within existing manufacturing techniques, since geometrical nonuniformities produce parasitic convection
{65, 84, 115, 118]. For this reason, planar columns, which have very marked gap nonuniformity, are
very undesirable [75]. Secondly, the same consequences should be eliminated by avoiding temperature
asymmetry which can arise from uneven heating or cooling, which is most likely when the heating is
provided by electrical means as in [89, 114]. For the same reasons, glass columns are also unsuitable,
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and these also make it difficult to measure the temperatures at the two surfaces. A packed column has
been used to determine the thermal-diffusion constant for bromine isotopes in bromobenzene [27], but there
has been little progress in the theory of such columns, and further research is needed to determine their
use in the measurement of Soret coefficients. Trevoy and Drickamer [30] appear to have used the above
considerations in making a cylindrical metal column (Fig. 10), This had two vessels equal in volume with
sampling devices. The inner cylinder was made with a tolerance of 5 pm, while the inner surface of the
outer cylinder had a tolerance of 13 um-. The internal cylinder, internal diameter 1.7 mm, had hot water
circulating with a speed of 1.5 m/sec (Re=15,000). The cooling was provided by a thermostat enclosing
the column. The working height was 101.6 mm. The method of cooling was unsatisfactory, since the heat-
transfer rate on immersing a column in a large thermostat is quite low, while there is a considerable
chance of an uneven temperature distribution around the parameter. All the same, the results for the
Soret coefficient for an equimolar mixiure of n-heptane with benzene (4.02 - 1072 deg™) were fairly close

to those obtained by Demichowicz— Pigoniowa [102] (4.6 - 1073 deg‘i) and also agreed closely with Korsching's
value (3.9 -107% deg™).

A further advance in the design of thermal gravitational columns suitable for determining Soret coef-
ficients was provided by Horne and Bearman [75], who improved the design of [30] by providing vigorous
cooling of the outer cylinder in a circulation jacket (flow rate 1.8 m®/h) and a high flow rate in the inner
cylinder (flow rate 1.6 m3/h). The tolerances in cylinder manufacture were reduced, being 0.1 um for the
outside diameter of the internal cylinder and 1um for the internal diameter of the outside cylinder.

The results agreed exactly with those of [59] for cyclohexane—carbon tetrachloride mixtures at all
concentrations.

A similar result was obtained by Stanford and Beyrlein [117] with a column closed at both ends
manufactured with tolerances of 2.5-7.5 um. However, even close tolerances on the two cylinders do
not necessarily guarantee successful operation.

Bott and Romero [93] found that the relative eccentricity affects the separation in the thermal diffu-
sion column; their column was 101.6 em high, and closed at both ends; it was made extremely carefully,
and the mean deviations of the working diameter of the two cylinders from the nominal value were, respec-
tively, 0.5 and 0.8 um.

However, if the axes of the working surfaces do not coincide, the eccentricity varies with the height;
the column was operated [93] at various points with high heat-transfer rates at the hot and cold surfaces
(water flow rates of 3.6 m?'/h), and it was found that the eccentricity has a substantial effect on the results,
from which it was concluded that a thermal-~diffusion column is unsuitable for determining Soret coefficients.

However, it has been shown [85] that the last conclusion is a consequence of using the formulas given
n [83], which are unsuitable for a column closed at both ends. Appropriate recalculation [85] showed that
the values obtained by Bott and Romero for the Soret coefficient were close to those obtained in the best
cells even with an eccentricity of 7 um.

Another column closed at both ends [94] differed from that of [93] in the method of centering the inner
cylinder with respect to the outer one; this has been used to measure Soret coefficients [86] for various
mixtures, and the results agreed satisfactorily with data from cells.

We can thus say definitely that some pessimistic views [74, 93] are unjustified, and a cylindrical ver-
tical thermal-diffusion column can be used as an instrument for measuring Soret coefficients.

Von Halle [90] described a new variety of thermal-diffusion column, namely a horizontal one, whose
main advantage was seen as being that the flows within the column are not dependent on the rate of with-
drawal of the enriched products (in contrast to a Clausius—Dickel column), a further advantage being that
the flows in opposite directions do not interact hydrodynamically, which rules out mixing. This is pro-
vided by separating the flows with a permeable membrane, the countercurrent motion being forced (pro-
vided by a pump). This column is to be considered as an industrial application of thermal diffusion for
mixture separation rather than an instrument, but Von Halle showed that his column of length 2.3 mm
(zap between the 0.4 mm cellophane membrane at the bottom of each channel of 0.89 mm) could be used
to determine Soret coefficients for aqueous ethanol. However, his results differed substantially from
published data for certain concentration ranges, and this goes with the complexity of manufacture for such
columns for use under laboratory conditions and difficulties in selecting the membrane to make this design
unsuitable as an instrument for measuring Soret coefficients.
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We thus conclude as follows:

1) the most reliable Soret coefficients are those measured in convection-free cells as described by
Korsching [14, 47] and Tyrrell [16, 110];

2) the Thomaes flow cell can give reliable results if appropriately calibrated, but some results ob-
tained with this instrument [63] still remain unexplained;

3) membrane cells have not yet been properly examined, and the large discrepancies between the
results from them and those from Korsching or Tyrrell cells oblige one to view them with reserve;

4) cylindrical thermal-diffusion columns of appropriate design are fully justified as instruments for
measuring Soret coefficients.
3. METHODS OF CALCULATING SORET COEFFICIENTS

3.1. Convection-FreeCells. The following assumptions are made in the mathematical description
of separation in a cell with a vertical temperature gradient:

1. There are no convection currents.

2. The two thermostatic surfaces have ideal geometry,

3. The mixture at the start is uniform in composition throughout the cell.
4, The steady-state temperature distribution is set up instantaneously.

5. The Soret and diffusion coefficients are independent of temperature and concentration, as is the
density.

In the steady state, the flux defined (1.1) is zero, and so we have the following simple formula for
the Soret coefficient:

Ing . Ac
AT cs(1—¢) AT

(3.1)
where

q:[C/(l —-—C)]l/[C/(l'—C)]s, (3.2)
and the subscripts I and s correspond to the larger and smaller values of ¢(]— c) at the cell boundaries.

Tanner [35] employed a method based on (3.1) in his first study on Soret coefficients, and this equa-
tion has been used in [7, 15, 16, 47], in all studies made on membrane cells [9, 10, 23, 31-33], and also
in packed cells [34].

It is permissible to use (3.1) to calculate Soret coefficients from data for membrane cells only if
the volumes on the two sides of the membrane are equal, as was the case in [23]). This follows from the
results of [44]. If the volumes are unequal, the steady state is not defined by (3.1) but will also be depen-
dent on the hot and cold volumes.

For this reason, the Soret coefficients of [9, 10, 31-33] cannot be considered as reliable.

A disadvantage of the steady-state method is the considerable length of time needed, so the nonsta-
tionary method proposed by De Groot in his dissertation [36] provides a very considerably shorter measure-
ment time.

The transient process is described by

0 _ _awi, (3.3)
ot
where _3; is the flux defined by (1.1). and the solution to (3.3) should provide that this flux is zero at the
surfaces bounding the cell.

Equation (3.3) is nonlinear, and De Groot solved it for the case ¢ <1 on the assumption that the den-
sity is temperature-independent; his solution gives the concentration difference between the surfaces at
large times as
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¢, — ¢, = CSAT (1 — e™™r), (3.4)
where the relaxation time is 7, =6%/72D.

Bierlein [37] solved (3.3) under the same boundary conditions but incorporating the temperature de-
pendence of the density, with the working concentration range extended by linearizing the nonlinear term
by putting ¢(1 —c) ® cg(1 —cy) +b(c — c(); the solution was obtained as a series, and Bierlein found that if
0< AT < 20 deg, 0<B <2-107 deg™, 0<5<1072 deg™!, —1<b<1 the quantities incorporating the thermal
expansion of the liquid can be neglected, and if one takes only the first term in the series (as De Groot did),
then

¢, — ¢, = sATe, (1 — c,) ( -5 e_mr) . (3.5)
a9

Equation (3.5) becomes (3.4) for ¢ small, except that in (3.5) there is a preexponential factor less than 1;

this discrepancy is due to an error made by De Groot, which has been discussed in detail by Tyrrell [38].

Bierlein obtained the following result for any point ¢ =x/6 for large times:

_ ' 1 4 -
¢c=c, [1 + SAT (1 — ¢,) (—2~ - E) =y SAT (1 — ¢,) cos nige ﬁ’]- (3.6)
This expression was then used to find the concentration gradient, which was used in processing the
optical measurements.

Subsequently, Bierlein [40] found that (3.5) is applicable only for ’r/'rr > 0.5, and he gave a graphical
method of determining the Soret coefficient from (3.6). It would appear that Japanese workers [39] arrived
at similar recommendations independently.

The above difference betweenv (3.4) and (3.5) is important, since the Soret coefficient derived from
(3.4) should be about 20% lower. For this reason, Tanner's data [41], which were derived from (3.4) with-
out allowance for the substantial restriction on T/Tr, cannot be considered reliable, and this applies also
to [50].

Bierlein's method has been used in particular in [14, 42, 43, 51, 52] to determine Soret and diffusion
coefficients; Mizushina and Ito [44] solved (3.3) with Bierlein's formulation, but with a series of Gaussian
functions.

These solutions were used [44] in three approximate methods of determining the Soret and diffusion
coefficients simultaneously; measurements with glucose solutions showed that these methods give results
for the diffusion coefficient that differ considerably, so the assertion [44] that the methods are suitable is
subject to some doubt.

Mizushina and Ito [44] also determined the concentration gradient at the middle of the cell for small
times (D;/6%2<0.1), which is required (see above) in calculating the Soret coefficient when optical methods
are used to measure the concentration:

5’@ 1
2

N

( de ) = 9¢, (1 — ¢ sAT erfc (1/4 1/ Do) (3.7)
§

The same result was obtained previously by Agar [69] for small c.

The literature bears no indication that (3.7) has been used. Bobrova and Rabinovich [53] derived
Bierlein's solution to (3.3) but neglecting the temperature dependence of the density They truncated the
series at the first term and described a method of determining the Soret and diffusion coefficients via
measurements made over two time intervals differing by a factor 2. This method was used in [54]. They
also showed that the separation in the cell is not symmetrical, although the asymmetry is small.

At the beginning of Sec. 3 we have formulated the assumptions usually made in analytical discussion
of separation in cells; Bierlein estimated the error arising from assuming p = constant when the density
actually varies with temperature, and this error is much less than the error of measurement under ordinary
experimental conditions.

Horne and Anderson [45] used a rigorous formulation in a detailed discussion of the effects of assump-
tions 4 and 5; this involved solving the equation of continuity, the Navier— Stokes equation, and the energy
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equation on the basis of expressions for the heat and mass fluxes. The temperature and concentration co-
efficients were incorporated for the density, specific heat, thermal conductivity, diffusion coefficient, and
thermal-~diffusion coefficient, Also, the time needed to attain the steady temperature distribution was de-
fined on the basis of a simple exponential temperature curve for the plates bounding the working volume,
as in [48]. They concluded [45] from an analysis of the very complex expression that the error would not
exceed 0.1% if the mixture had parameters of the order of those given in Table 2, and that the following
formula can be used for the Soret coefficient for 7/7,.> 1/2 and AT < 25°C:

, 8 ‘ . mE - S -

Cly iy —Clym o= (1 — ) sAT [E - (1--T)sin ——QE— exp(——}—r— )], (3.8)
where the differences from (3.6) are that £' =2x/8 and the origin lies at the midsection of the cell. It is
simple to derive (3.8) without the (1+I') factor from (3.6), since the latter incorporates the time needed
to reach the steady temperature distribution, with T=n%/8¢/ Ty), where y is the measured relaxation time
for the temperature distribution. This time was 46 sec in the experiments of [46].

The contribution introduced by T into the second term in the right in (3.8) for a cell whose plates have
a separation of about 1 em should not exceed ahout 0.1%, but it may be several per cent and must be allowed
for if the cell is of the type used by Tyrrell [16].

Horne and Anderson's study thus gives a complete theoretical basis for the conditions for using (3.5)-
(3.8).

3.2. Flow Cell. The following assumptions are made in calculating the concentration distribution
in such a cell;

1. The flow is laminar.

2. The laminar velocity distribution is established instantaneously at x=0,

3. The upper and lower plates are ideally isothermal.

4, The side walls have no effect on the velocity distribution,

5. The ﬁhérmal conductivity, viscosity, diffusion coefficient, and Soret coefficients are constants.
6. Diffusion along the flow direction may be neglected.

- Subject to these assumptions, the differential equation for the separation in the steady state, div
j1 =0 with

, de

jix = —pD T P (3.9)
fl,,=—pD[i st —q AL ]

: oy
for ¢ small takes the form

d% AT oc w, dc

+85 ——— — = =10, 3.10
ay* 5 dy D dx ( )

where Wy, = AP/2nL)(y* —yd), L is the cell length, and AP is the pressure difference between the ends.

The solution to (3.10) should meet the condition that the fluxes of (3.9) are zero atthe surfaces ofthe
cell. '

The main interest attaches to conditions under which there is maximal separation between the upper
and lower halves of the flow at the exit,

Thomaes [55] first solved (3.10) and found that the maximum separation is obtained if
xD , SAT 2
8w [“2 - < D) ) ] > 5, (3.11)

where x is the longitudinal coordinate and w is the mean flow speed. He also gave a formula for the Soret
coefficient for an arbitrary initial component concentration:

8 Ac,
— o 3.12
BT ATe (= 8.12)
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in which AG,, is the maximum difference in the mean concentrations in the halves,

Equation (3.12) has been used [57] to determine the Soret coefficient for a mixture of n-hexane with
nitrobenzene near the critical point; Thomaes also examined the effects of displacing the knife edge onthe
error of the result and found that even an appreciable displacement from the middle position had very little
effect.

Butler and Turner [56] showed that for AT < 20°C the second term in (3.10) may be neglected, al-
though they incorporated the effects of thermal expansion. The solution to (3.10) was obtained by computer.
Three approximations were obtained for F(Dx/6%w), which defined Az /AG,, for various ranges in Dx/6%w;
in particular, for (Dx/6%)>0.035 they found

Ac,
Ace

Dx
w1 — 1.045exp [ —13.66 2% ). .
P( - ) (3.13)

Klapisz and Chanu [62] used a different mathematical technique to solve (3.10) and derived the ratio ¢/ Cm
as a function of the dimensionless transverse and longitudinal coordinates together with the parameter
sAT subject to the condition ¢<<1, where ¢y, is the mean concentration at any point. However, they made
no recommendations on how the calculation should be performed,

3.3. Thermal-Diffusion Column, Jones, Furry, and Onsager [64, 65] and independently Debye [66]
developed the theory of gravitational thermal-diffusion columns of Clausius—Dickel type, in which the fol-
lowing assumptions were made:

1. The two working surfaces are ideally i{sothermal and there is a temperature gradient only perpen-
dicular to the convective flow.

2. The flow in the gap between the working surfaces is laminar.

3. The effects of temperature and concentration on the density, thermal conductivity, viscosity, and
diffusion and Soret coefficients can be neglected.

The theory then gives the following equations for the transport of the desired component towards the
positive end of the column:

i =Hc(1—-c)—-K—Z§ + oc. (3.14)

In the steady state, we get from (3.14) for a column closed at both ends in the absence of sampling that

- pgfé*
504nDL Ing* (3.15)
where
. C(l—cy
* . e\ i 3.16
q (1 —c) (3.16)

is the degree of separation in the steady state. De Groot [70] pointed out that the variation of density with
concentration can have a substantial effect on separation in a thermal-diffusion column. This essentially
correct observation served as basis for explaining various anomalies observed in the operation of thermal-
diffusion columns [5, 6], and for many years the effect was considered as a major factor in the separation
[38, 71-74], until Korchinsky and Emery [118] performed a numerical solution of the equation for convec-
tive diffusion containing a term incorporating the horizontal component of the velocity arising {rom the
density variation over the cross section and height of the colummn.

This solution indicated that the density effect could be neglected in the steady state, while its effect
was small for gaps 5> 0.25 mm even in the transient state; the effect was also negligible when the concen-
tration of one of the components was small.

Horne and Bearman [77] drew the same conclusion from estimates of the effect in the separation of
a mixture of carbon tetrachloride with cyclohexane, where the effect was around 1%.

They also made a very careful study of the effects of temperature and concentration on all the trans-
port coefficients [25, 76], and found that the effects could usually be neglected in the steady state under
the condition 0.28 <AT < 56.8°C, which agreed with Emery's results [78], which were based ona theoretical
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study of the effects of the temperature dependence of the viscosity; it was found that the temperature de-
pendence of the viscosity could have a substantial effect on the separation in the thermal-diffusion column
only for extremely viscous liquids such as glyceraol.

Measurements of the Soret coefficienthave been based on (3.15) in various studies [4, 27, 30, 75, 79,

871; however, nonstationary methods were used well as the stationary one, which were based on the solution
to

m 2 — _divij, (3.17)
Jv

where j is the flux defined by (3.14).

The solutions to (3.14) will vary with the formulation of the boundary conditions; if the column is
closed at both ends, the conditions are taken as that the fluxes are zero {for ¢ =0) at both ends. Bardin
[68] and Debye [66] solved this problem with different forms of approximation for the nonlinear term
¢(l —c¢); Majumdar [81] and Von Halle [82] derived the exact solution, while Ruppel and Coull [83] derived
a modified form of the solution applicable for small times, and the latter was used by Romero and Bott
[93] to determine the Soret coefficient in the form

_ (ce—¢;)d ‘/ 10 =
$ = Ao, (1 —c,) AT 7 Dr - (3.18)
The value found [93] from (3.18) for an equimolar mixture of n-pentane with benzene was much less than
the value found in convection-free cells.

We shall not deal in more detail with the result of [66, 68, 81, 82, 83], nor with solutions derived
for the case where one end of the column is joined to a large vessel and the other is closed [80, 84], since
an actual thermal-diffusion column operating in the nonstationary state can never be considered as closed
at both ends or at one end, i.e., the mathematical formulation of the boundary conditions for (3.17) cannot
contain a specification that the fluxes at the ends are zero, Rabinovich [85] emphasized this point, which
was confirmed by the above study [93], and also by Rabinovich's own experiments [86, 92]. The basis of
[85, 86] was the view that at the ends of the column there are always volumes arising from the turn through
180° in the direction of the convection current. The mathematical formulation of the boundary conditions
should incorporate these volumes, and a column that is usually called closed at both ends then hasboundary
conditions in the following form for the case, for example, where c(1 —c) = const =y:

yemi _(?E_ S @_ —— 11;’ (3.19)
06 y=0 ay y=0
dc ac .
o, —— _— - Y.
0 e 00 iy

The solution to (3.17) subject to (3.19) gave the following expression for the Soret coefficient:

A28
, 3.20
nAT ; (3.20)

s = 1.17

where h and n are the intercepts on the ordinate and the slope ofthe straight line in Ac/T) —V7 coordinates,

An analogous formula has been derived [86] for ¢ small,

An approximate solution to (3.17) subject to the conditions of (3.19) is possible if one assumes that
the separation is quasistationary, provided that w is redsonably large. De Groot has shown [70] for this
case that there is a simple linear relationship between the concenfrations at the ends and the run time for
small times and equal volumes in the two vessels for varicus forms of approximation for the nonlinear
c(l —c¢) term, and this takes the following form for the case c¢(1 —¢) ¥ const = 3, for example

Co. _q % pgbsS@ATB

€ ¢ 6!V ' (3.21)
1 — G _% pgspt® (AT)* B .
% Co 6! V‘I’]

Then a curve for the concentration as a function of time may be drawn up, and the tangent atthe point 7=0
gives the Soret coefficient. This method was used in [5, 6, 11, 87, 91]; unfortunately, it has been pointed
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out [5, 38]that the method involves an uncertainty arising from constructing the tangent at zero, Murin
{88] also obtained a quasistationary approximation for the transient in a column having volumes at the end,
which differed from De Groot's solution in that the volumes of the vessels were not equal. Later, Murin
and Popov [89] used a formula analogous to (3.21) to determine Soret coefficients for various electrolyte
solutions, but not by constructing the tangent at zero; instead, they used concentration measurements at
some point in time.

A formula of the type of (3.21) is acceptable if the run time is substantially less than the characteris-
tic time; this condition was observed in [5, 6, 11], but in Tyrrell's view [38] it was not met in the experi-
ments of Murin and Popov [89]. '

Von Halle {90], who developed the theory of horizontal thermal-diffusion columns with two flows
moving in opposite directions and separated by a permeable membrane, derived the following formula for
the Soret coefficient: '

1 2R +6 (\po Y-
§=————|" 15,
5 R-+6 5o )

in which R is the channel depth, 6 is the membrane thickness, s, is the reduced length of the separating
stage, and (y/s,) is found by calculation from the measurements,

(3.22)

The results obtained in this way for the Soret coefficients of ethanol—water mixtures agree satis-
factorily with results given by others.

4, MEASUREMENT METHODS

Measurements designed to give the Soret coefficients from the above formulas involve determining
the following: a) the geometrical dimensions of the apparatus, b) the temperature conditions, and ¢) the
concentration changes at set points,

Although at first sight it would appear that the geometrical parameters are the simplest to determine,
the task is in fact fairly complex, especially for parameters such as the working height of a cell or the
working gap in a thermal-diffusion column. Any variation in these quantities in the apparatus will result
in a temperature nonuniformity, and as a consequence will produce parasitic flows. Unfortunately, little
attention has been given to this aspect in measurements. The first direct measurements of geometrical
variations in a thermal gravitational column are those of [93], which were followed by those of [94]. It
seems that nothing has been published on this aspect for cells, The error of measurement for the distance
between the thermostatic surfaces is equally important. This is especially so [75] in determining the Soret
coefficient from separation data for a thermal-diffusion column operating in the steady state on the basis
of (3.15), since the result is dirvectly proportional to the fourth power of the gap. For this reason Prigogine
[4] stated that the error may attain +40% in determining the Soret coefficient for H,O0 —D,0 mixtures, since
the error in measuring the gap may be +=10%.

The nonstationary method is free from this disadvantage [85, 86], in which the Soret coefficient is
proportional only to the first power of the gap.

Formulas (3.11) and (3.13) imply that it is important to measure precisely the distance between sur-
faces also for flow cells, particularly since the gaps in such cells are very small (@bout 0.1 mm). Other
geometrical characteristics are the deviation from vertical or horizontal positions. Korsching [14] made
measurements on these deviations using a level indicator to set the cell with an error of 0.1 mm/m; how-
ever, such measurements by themselves cannot determine whether this level of accuracy is sufficient to
suppress convection currents. Here considerable interest attaches to measurements made by Nachtigall
and Meyerhoff [43], who found that the Soret coefficients remained unaltered when the cell was tilted by
up to 0.8 mm/m. This means that Longworth's quoted setting accuracy (5') could have resulted in con-
vection currents, with a corresponding reduction in the Soret coefficient, since this tilt is almost twice
the limit indicated by Nachtigall and Meyerhoff,

As regards thermal-diffusion columns, we have only the data of Horne and Bearman, whofound that
the error in the concentration difference did not exceed 3 + 107° when the cylindrical column deviated from
vertical by 2°, i.e., the effect was negligible. It has been shown [44] that the volumes of the chambers in
a membrane cell are important; the values for the volumes are queted in certain papers [9, 23, 31], but
they were not used in the calculations, which, as we have seen above, is justified only when the two volumes
are equal, and this condition was not met in [9, 31].
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The temperatures at the thermostatic surfaces of cells have usually been measured with thermocou-~
ples, but in earlier studies [107-109] the measured temperatures were those of the hot and cold liquid
flows, which were provided by thermostatic systems, which naturally resulted in errors due to neglect
of the thermal resistance of the walls. Unfortunately, this error persisted in a much later study [95].
Tanner's method [35, 41] is somewhat better, in which a mercury thermometer was immersed in a recess
in the plate, which was filled with glycerol. However, here there is still a small temperature difference
within the body of the plate. A similar deficiency occurs in Thomaes' method [7], in which platinum resis-
tance thermometers were used instead of mercury thermometers, which recorded the temperature differ~
ence by connection in a bridge cirecuit.

An important point for a membrane cell is to measure the temperatures directly at the membrane
surfaces, which is technically difficult if thermocouples are used, since the membranes are made of glass.

In [96], for example, the authors restricted themselves to stating that the thermocouples were placed
near the surfaces of the membrane, while in [23] the temperatures were measured with thermistors. On
the other hand, Alexander [31] has shown that the temperature difference between the surfaces of a mem-
brane may be as much as 10-20% of the overall temperature difference between the two chambers, and that
substantial errors can arise in calculating the Soret coefficient if the temperature is measured at a point
characterized by the indefinite concept of "near.” More reliable results have been obtained by cementing
the thermocouples to the membrane [9, 10, 97-99].

Another major aspect of measurements on Soret coefficients is the concentration shift; if the device
is a membrane cell, flow cell, or thermal—gravitational column, the concentration is measured during
the experiment by taking samples for analysis by some traditional method. The usual instruments are
precision refractometers or interferometers, which naturally require preliminary calibration. However,
other instruments have been used: for density measurement with Hy,O—D,0 mixtures in the column [4],

a pychometer in separating hydrogen isotopes in benzene [113], chlorine isotopes in trichloroethylene, and
bromine isotopes in bromobenzene {27, 101], or else a mass spectrometer [92] in separating bromine iso-
topes in brominated n-hydrocarbons. Evaporation has also been used [91] to measure the concentration of
a solid solute, The radioisotopes Co%, §%5 13! Pb?!? have also been used [89] to determine Soret coef-
ficients for dilute agueous electrolyte solutions. The same method has been used with a binary mixture

of n-heptane and n-hexadecane [23], the first being labeled with ! and the second with tritium. The
concentrations were expressed as count rates when the radioactive labels were employed.

Assays on dilute electrolyte solutions have also been based on the electrical conductivity [11, 31],
and interference from electrolysis has been eliminated by using an audiofrequency oscillator and a vacuum-
tube voltmeter.

It is undesirable to sample the working space directly in a convection-free cell [54], since this can
substantially distort the results, This disadvantage is absent in the optical method, which was first used
by Tanner in 1927 [35] to measure thermal diffusion in liquids, and which had first been suggested by
Wiener [100] for measuring diffusion coefficients. The basis is that a light beam passing through the
medium, which contains a vertical density gradient arising from temperature and concentration gradients,
is deflected in the direction of increasing refractive index. This deflection vy is measured, and a correc~
tion is applied for the temperature gradient, which gives the following expression [37, 39, 40]:

_fL . on o
VThES e
where vy, is the beam deflection caused by the temperature gradient, f is the distance from the cell to the
screen, L is the cell length along the beam path, and é is the cell height.

(4.1)

We substitute for de/d¢ for (3.6) to get
T
L an 4
Y—Vo=co(l“co)SAT’_6‘"§c" 1—-—%—smn§e . (4.2)

The concentration gradient is least in the central section of the cell, so the beam should pass through this
section, which corresponds to & =1/2. The value of Yy is found from a measurement at the start, while
the value of dn/dc, which is taken as constant during the experiment, is found from preliminary measure-
ments of the refractive index as a function of concentration, as in the case of benzene +n-heptane [102].
We see from (4.2) that the optical method does not require the absolute concentration to be measured in
order to calculate the Soret coefficient.
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This method has been used in various styles in several studies [14, 35, 30, 40, 41, 42, 47].

From 1956 onwards, interferometery has been used in such measurements [50]; Longworth [52, 103]
improved the technique and applied it for the first time in measuring thermal diffusion in a two-chamber
cell, which had the advantage that it eliminated any possible temperature fluctuations. This method has
been used in the various modifications described in [38, 104] in several researches [16, 105, 106].
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